
Some Fundamental R Programming Concepts
Lesson 01

Psychology 310

1 Why Are We Doing This?

It’s a fair enough question to ask. You signed up to study Psychology, and
here you are in a Statistics course! And no sooner does the statistics course
start, than you’re learning some Computer Programming !

To some of you, this may seem like you signed up for a sea cruise to
the Mediterranean, and now you’ve found yourself on a train, it’s freezing
outside, and the destination is Siberia. What’s going on?

OK, we admit it. We tricked you
Well, not really. If you are going to study Psychology, and get a Ph.D.,

you will need to be able to do some statistics. Actually, you will need to
do a lot of statistics. You may think there is a way around this. You’ll get
someone else to do the statistics. Your advisor will tell you what buttons to
press. Sorry, that is unlikely to be enough. Not only that, but if you want
to be an outstanding Ph.D. with a chance at a really good job at a top 20
institution, you’re going to need to really know what you are doing when you
do your statistics. Your goal should not be to learn how to follow orders
from your advisor. Your goal should be to end up knowing more than your
advisor.

How are we going to reach that goal together?

1.1 Leverageable Knowledge

Many of you have studied statistics in a single undergraduate course. The
goal was to teach you a few basic techniques, and perhaps a few key ideas.
We want to take you deeper, and further.

The key is to teach ideas that are leverageable, that is, ideas that can be
used easily to generate new ideas and new knowledge.

Statistical ideas can be difficult to study. At times they can seem bewil-
deringly abstract. We need a tool that we can use to quickly put our ideas
into action, so that we can make them more concrete. That way we can play
with them at the same time we study them.

1

R is just such a tool. Just a few minutes after using R for the first time,
you can use it to answer some challenging questions while playing with some
important ideas. R can bring ideas to life. All you need to know is how to
tell it what to do.

So although it may seem esoteric and arcane, and at times it will prove
clumsy and annoying, R is worth understanding.

R is a statistical program, but it is also a statistical programming envi-
ronment. By learning how to program R, you can create your own statistics
functions to do exactly what you want to do, the way you want to do it. You
can also use R to play what-if games, scenarios in which you examine what
would happen in your data analyses if certain conditions were true. To some
extent, this process can help make a game out of studying statistics. It can
also provide you accurate answers to complex questions in situations in which
you might feel like your statistical knowledge level is overmatched.

Moreover, you will never pay for R. It is free, open source software. There
are no annual license fees, few if any problems if you shift from a PC to a Mac,
or to Linux. R runs in all those environments. SAS and SPSS prorgrams
are excellent software, and they have worked well for many people in many
places. Your own research lab may use this software extensively, and it may
not cost you anything to use it. Consequently, You may think SAS or SPSS
is a great deal with no downside. However, if you ever leave academics, you’ll
spend a lot of money on licensing fees to run the software.

That is why a lot of people and departments are moving away from SAS
and SPSS, and starting to rely more on R.

1.2 Programming — It’s Not Just for R

There are lots of great commercial statistical software packages out there
besides SAS and SPSS. For example, Stata and Statistica are both terrific
packages. All of these programs have a programming capability built into
them. While you’re learning some basic concepts of R programming, you’re
also going to learn about programming in general. What you learn can be
generalized easily to commercial statistical software packages. It can also be
used to program Microsoft Excel, or, further on down the road, your own
web page should you choose to create one.

The truth is, someone with absolutely no computer programming expe-
rience has a serious knowledge deficit in the modern scientific community.
Trust me, this is not a deficit you want to carry with you on your road to

2

the Ph.D..

1.3 Summing it Up

So why are we here? Because to gain the full power of statistical software,
you need to be able to write programs. To be able to write programs, you
need to understand some basic programming concepts. Once you learn these
concepts, you’ll be able to make R do what you want, when you want it.
You can use R to have fun while learning statistics. You’ll have a highly
leverageable skill that will serve you well in other venues, as well. In what
follows, we’ll be concentrating on general programming concepts, rather than
their specific application to statistics.

2 Vector Objects—and Simple Operations on

Them

2.1 Introduction

R is an object-oriented language. In R, there are several types of objects.
You can discover the type of something with the typeof function. R is also
an interpreted language. When you enter a syntactically complete statement
and press the <Enter> key, R evaluates it immediately. If you press the
<Enter> key and rather than getting a response, you see a + sign, it means
you have not actually entered a complete response. Often this will happen
when you accidentally leave out a parenthesis in a complicated expression.

For example, in your R console window, if you type 4 + 2 and press the
<Enter> key, you get 6.

> 4 + 2

[1] 6

But what happens if you type just 4 + and and press the <Enter> key?
Try it.

You see a '+' character. This is the continuation character
When you see this character at the beginning of the line, it is an invitation

to “keep going.” In this case, just enter the 2 to complete the statement.
Now you will see the result

3

> 4 +

+ 2

[1] 6

2.2 Vector Objects

Those of you who have taken a course in linear algebra learned that a single
number is called a scalar and a list of numbers is called a vector.

The distinction between scalars and vectors is not maintained in R. That
is, a scalar is a vector of length 1.

Think of a vector of length n as a stack of n cells that might be filled
with things.

2.3 Variables, Assignment Statements, and Vectorized
Operations

For example, a vector x might have the numbers 1 through 4. R has a very
elegant way of entering a contiguous sequence of numbers. The sequence of
integers from 1 to 4 is entered as 1:4.

To assign these numbers to a vector x, simply do the following.

> x <- 1:4

If we then type the letter x and press <Enter>, R evaluates the expression
by printing the current value of the vector object x.

> x

[1] 1 2 3 4

Although you seldom see them, left-to-right assignment operations are
also allowed, such as

> 5:7 -> w

> w

[1] 5 6 7

4

Many computer languages define their assignment statements in terms of
an equals sign, such as

> y = 10:15

> y

[1] 10 11 12 13 14 15

This works in R too, but it is better to use the <- operator.
A right-to-left assignment statement assigns the result of the expression

on the right to the object on the left of the assignment operator.
So if we start with the vector x defined as

> x

[1] 1 2 3 4

and then write

> x <- x + 1

we end up with

> x

[1] 2 3 4 5

Look carefully at what happened. R took the vector x, added 1 to it, and
assigned the result to — the vector x. This type of statement allows us to
update a variable easily.

The operation was vectorized, i.e., what statisticians call a listwise oper-
ation was performed. That is, the number 1 was added to all elements of the
vector x.

Now, actually, what happened internally in R may be thought of in terms
that are slightly more complex than what I described. R has a rule for
arithmetic operations on vectors. Remember that everything is a vector. An
individual number is a vector of length 1, and in the above example, x is a
vector of length 4.

The general rule for vector operations is that all operations are element-
wise. For example, consider two vectors x and y. If they are the same size
n, then the product x * y is a vector of length n, and each element in that
vector is the product of the corresponding elements in x and y.

For example, suppose x and y are

5

> x

[1] 1 2 3 4

> y

[1] 0 1 2 3

Then their product is? See for yourself.

> x * y

[1] 0 2 6 12

But what if y is not the same size as x? For example,

> x

[1] 1 2 3 4

> y

[1] 1 2

Then what?

> x * y

[1] 1 4 3 8

Here is what R did. It recycled the elements from the vectors that are
too short, so that they equalized the lengths of the vectors. In the example
immediately preceding, the vector y has only 2 elements, while x has 4. So
the two elements were recycled. Thus, for the multiplication with x, the
vector y was expanded to

[1] 1 2 1 2

Now we can see what is really happening when we write x+1. The vector
x has length 4, while the vector 1 (remember, in R single numbers are really
vectors!) is only of length 1. So when you give R an expression that tells it
to evaluate x + 1, it recycles the 1 four times and really adds the vector x

to a vector with four 1’s in it.
Most of the time, you are not aware of the fact that this is going on

behind the scenes. But it turns out to be very convenient, because it means
that you can write a statement like w <- 2*x + 5 and R will multiply every
element of x by 2, add 5 to every element, and assign the result to w.

Take a look at this example, using the current x.

6

> x

[1] 1 2 3 4

> 2*x + 5

[1] 7 9 11 13

2.4 The Concatenation Function

A key function in R is the concatenation function c. It takes a group of
objects and stacks them in a vector.

Here are some examples.

> x <- c(1,2,3,4,6)

> x

[1] 1 2 3 4 6

> c(x,5)

[1] 1 2 3 4 6 5

> c(0,x,7)

[1] 0 1 2 3 4 6 7

> c(x,x)

[1] 1 2 3 4 6 1 2 3 4 6

2.5 The rep Function

In the last example, we stacked two copies of x. Another way of doing that
is to use the replicate function

> rep(x,2)

[1] 1 2 3 4 6 1 2 3 4 6

> rep(1,10)

[1] 1 1 1 1 1 1 1 1 1 1

7

2.6 Arithmetic Operator Precedence

Sometimes, an operation will produce a result that is completely surprising.
In quite a few instances, that will be because you didn’t understand the
rules of operator precedence. When evaluating an expression, R will apply
operators according to precedence rules. In general, expressions are evaluated
from left to right, but with certain operators taking precedence over others
where there is an ambiguity. We won’t describe the precedence rules in
full detail, but for the basic arithmetic and logical operations, the order of
precedence, from highest to lowest, is

Operator Function
+ - (unary use of the plus or minus sign)
: (sequence creation)
^ (exponentiation)

* / (multiplication, division)
+ - (addition, subtraction)

== != < > <= >= (comparison)
! (logical “not”)

& && (logical “and”, front-element “and”)
| || (logical “or”, front-element “or”)
-> (left-to-right assignment)
<- (right-to-left assignment)

You can always use parentheses to group operations and help avoid er-
rors. Such errors occur due sometimes because of a lack of understanding
of operator precedence, but they can also result from the sheer visual con-
fusion induced by complex expressions. Just remember that multiplication
is always explicit in R. Unlike some other languages where the expression
4(4+2) would evaluate to 24 this expression generates an error message in
R. You need to enter

> 4*(4+2)

[1] 24

Here are some examples that illustrate how operator precedence and ex-
pression evaluation work:

> 4 + 2 * 7

8

[1] 18

Note that, because the multiplication operation takes precedence over
addition, the answer is 4 + 14 = 18, not 6 * 7 = 42.

> 4 * 2^3 + 7

[1] 39

In this case, the exponentiation operation was performed first, yielding
2^3 = 8. Next came the multiplication, yielding 4 * 8 = 32. Last came the
addition, yielding 32 + 7 = 39.

> J <- 5

> 0:J-1

[1] -1 0 1 2 3 4

Note that since the sequence operation takes precedence over the subtrac-
tion operation, the second line in the example first generates the sequence
0:5, then subtracts 1 from it, thus yielding the result shown.

> -1:5

[1] -1 0 1 2 3 4 5

Note that the unary - is evaluated before the sequence operation! Study
carefully the difference between this next expression and the preceding one.

> -(1:5)

[1] -1 -2 -3 -4 -5

> 5 - 1 / 2

[1] 4.5

> (5-1)/2

[1] 2

9

2.7 Logical Expressions and Comparison Operators

A substantial part of computer programming involves calculating whether
certain conditions are true. Often, decisions are made by comparing quanti-
ties.

Consider the following expression and its result:

> 4 > 3

[1] TRUE

The > operator evaluates whether the expression to its left is greater than
the expression to its right. So the expression 4 > 3 evalutes whether 4 is
greater than 3. Since it is, the logical value TRUE is returned.

Such evaluations may be vectorized. Consider the following example.

> x <- -2 : 5

> x

[1] -2 -1 0 1 2 3 4 5

> x > 0

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

The < operator evaluates whether the expression to its left is less than
the expression to its right.

> 5 < 4

[1] FALSE

> x

[1] -2 -1 0 1 2 3 4 5

> x < 4

[1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

In a similar vein, the >= and <= operators evaluate “greater than or equal
to” and “less than or equal to,” respectively.

> 5 >= 5

[1] TRUE

10

> x <- -2 : 5

> x

[1] -2 -1 0 1 2 3 4 5

> x >= 2

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

> x <= 3

[1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

Equality is evaluated with the == operator. Note the double equal sign!
Many programming errors in R result from using a single equals sign when
two should be used. Study the following example:

> x <- -2 : 5

> x

[1] -2 -1 0 1 2 3 4 5

> y <- x == 2

> y

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

The “not equals” operator is !=.

> 4 != 2

[1] TRUE

> x <- -2 : 5

> x

[1] -2 -1 0 1 2 3 4 5

> x != 3

[1] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE

There are several logical operators for evaluation of more complex condi-
tions.

The logical “and” operator & is used to evaluate whether two expressions
are simultaneously TRUE.

Here is an example.

11

> x <- 4

> x < 6

[1] TRUE

> x > 3

[1] TRUE

> x < 6 & x > 3

[1] TRUE

> x < 3

[1] FALSE

> x > 1

[1] TRUE

> x < 3 & x > 1

[1] FALSE

The logical“or”operator is applied to two expressions to determine whether
at least one of the two expressions is true.

> x <- 4

> x < 6

[1] TRUE

> x > 3

[1] TRUE

> x < 6 | x > 3

[1] TRUE

There are longer forms of the “and” and “or” operators that work in the
following way: The longer form evaluates left to right examining only the
first element of each vector. Evaluation proceeds only until the result is
determined.

> x <- 1:5

> y <- 3:7

> x > 2

12

[1] FALSE FALSE TRUE TRUE TRUE

> y > 2

[1] TRUE TRUE TRUE TRUE TRUE

> x > 2 & y > 2

[1] FALSE FALSE TRUE TRUE TRUE

> x > 2 && y > 2

[1] FALSE

> x > 2 | y > 2

[1] TRUE TRUE TRUE TRUE TRUE

> x > 2 || y > 2

[1] TRUE

3 Character Expressions, Lists, and Indexing

So far, we’ve been working only with vectors, and the vectors have contained
either numbers or logical results. Another form of data we frequently process
with R is character data. We signify character data by placing the character
string within quotes.

> last.names <- c("Romney", "Obama", "Bush", "Clinton")

> last.names

[1] "Romney" "Obama" "Bush" "Clinton"

We now see that vectors (at least) can contain numbers, logical results,
or character strings.

However, vectors have a serious limitation. They cannot contain a mix-
ture of things. Try entering the following:

> presidents <- c("Romney",2012)

> presidents

[1] "Romney" "2012"

13

Notice how the 2012 which I tried to enter as a number got converted to
"2012". R realized that the two elements were of different types. It is much
easier to convert 2012 to a character string than to convert "Romney" to a
number. Consequently, R made the internal decision to convert the 2012 to
a character string.

I can access the second element of presidents by using a subscript, i.e.,

> presidents

[1] "Romney" "2012"

> presidents[2]

[1] "2012"

However, if I try to divide that number by 4, I run into a problem because
R converted the number to text.

> presidents[2]/4

Error in presidents[2]/4 : non-numeric argument to binary operator

Lists in R have many of the virtues of vectors, but allow you to include
items of different types.

> presidents <- list(c("Obama","Bush","Bush"),c(2008,2004,2000))

> presidents

[[1]]

[1] "Obama" "Bush" "Bush"

[[2]]

[1] 2008 2004 2000

> presidents[[2]]/4

[1] 502 501 500

14

